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The complex relationship between structural and functional
connectivity, as measured by noninvasive imaging of the human
brain, poses many unresolved challenges and open questions. Here,
we apply analytic measures of network communication to the
structural connectivity of the human brain and explore the capacity
of these measures to predict resting-state functional connectivity
across three independently acquired datasets. We focus on the
layout of shortest paths across the network and on two commu-
nication measures—search information and path transitivity—
which account for how these paths are embedded in the rest of
the network. Search information is an existing measure of infor-
mation needed to access or trace shortest paths; we introduce path
transitivity to measure the density of local detours along the short-
est path. We find that both search information and path transitivity
predict the strength of functional connectivity among both con-
nected and unconnected node pairs. They do so at levels that match
or significantly exceed path length measures, Euclidean distance, as
well as computational models of neural dynamics. This capacity
suggests that dynamic couplings due to interactions among neural
elements in brain networks are substantially influenced by the
broader network context adjacent to the shortest communication
pathways.
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The topology and dynamics of brain networks are a central
focus of the emerging field of connectomics (1). A growing

number of studies of human brain networks carried out with
modern noninvasive neuroimaging methods have begun to
characterize the architecture of structural networks (2–4), as well
as spatially distributed components (5–7) and time-varying dy-
namics (8) of functional networks. Although structural connec-
tivity (SC) is inferred from diffusion imaging and tractography,
functional connectivity (FC) is generally derived from pairwise
correlations of time series recorded during “resting” brain ac-
tivity, measured with functional magnetic resonance imaging
(fMRI). Both networks define a multiplex system (9) in which
the SC level shapes or imposes constraints on the FC level. In-
deed, mounting evidence indicates that SC and FC are robustly
related. Numerous studies have documented strong and signifi-
cant correlations between the strengths of structural and func-
tional connections at whole-brain (2, 10–13) and mesoscopic
scales (14), as well as acute changes in FC after perturbation of
SC (15).
Although there is ample evidence documenting statistical

relationships between SC and FC, the causal role of SC in
shaping whole-brain patterns of FC is still only incompletely
understood. There are numerous reports of strong FC among
brain regions that are not directly structurally connected, an
effect that has been ascribed to signal propagation along one or
more indirect structural paths (11), or to network-wide contex-
tual influence (16). The present paper builds on two interrelated

premises. First, if SC plays a major causal role in shaping resting-
state FC, then appropriately configured generative models that
incorporate SC topology should be able to predict, at least to
some extent, FC patterns. To this end, a number of models have
been proposed, including large-scale neural mass models gen-
erating synthetic fMRI time series (11, 17, 18) as well as analytic
models based on distance and topological measures (19) or
attractor dynamics (20, 21). Second, the extent to which the
resting-state time courses of two brain regions become tempo-
rally aligned (i.e., highly functionally correlated) should be at
least partially related to the ease with which mutual dynamic
influences or perturbations can spread within the underlying
structural brain network.
Both premises imply that the strength of FC is related to

measures of network communication. The principal communi-
cation measure applied previously in studies of brain networks is
the efficiency (22), computed as the averaged inverse of the
lengths of the shortest paths between node pairs. The use of this
measure is based on the assumption that short paths are dy-
namically favored, as they allow more direct (faster, less noisy)
transmission of neural signals. However, relying on path length
as the sole measure of communication does not take into ac-
count how these paths are embedded in the rest of the network,
which may further modulate the dynamic interactions of neu-
ronal populations. For example, along a given path, branch
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points may lead to signal dispersion and hence attenuate FC,
whereas local detours may offer alternative routes that amplify FC.
Here, we present an approach toward predicting FC from SC

based on several analytic measures of network communication.
We used sets of high-resolution SC and FC maps of the cerebral
cortex, obtained from three separate cohorts of participants and
acquired using different scanners and imaging protocols. First,
the relationship of FC to spatial embedding and path length was
explored. Next, we attempted to predict FC from SC by imple-
menting both linear and nonlinear computational models. We
then examined the capacity of several analytic measures of net-
work communication along shortest paths to predict FC from
SC, singly and in the simple form of a joint multilinear model.
Our results demonstrate that analytic measures that take into
account the structural embedding of short paths are indeed ca-
pable of predicting a large portion of the variance observed in
long-time averages of resting-brain FC.

Analytic Measures Related to Network Communication
A variety of network-based communication processes and asso-
ciated measures have been proposed (23, 24). In this paper, we
focus on a set of four measures that capture various aspects of
internodal interactions along the shortest path.
The SC of a parcellation of the human cortex into N regions

can be expressed as an undirected weighted graph G≡ fV ;Wg
formed by a set of nodes V = fv1; v2; :::; vng and a matrix of fiber
density values W = ½wij� with values in the range of [0,1], and with
wij = 0 for regions i; j that are not directly connected. The
strength of a node i is defined as wi =

P
j≠i wij. Converting W

into a matrix of edge lengths or distances L= ½lij� (here calcu-
lated using the matrix transforms L= − logðW Þ and L= 1=W )
allows the identification of shortest paths, comprising lists of
unique weighted edges, that span the minimum distance be-
tween each node pair. Once all shortest paths have been
identified, their lengths can be expressed as the weighted path
length D (the sum of edge lengths) and the corresponding
number of steps K .
Search information quantifies the accessibility or “hiddenness”

of a path linking a source node s to a target node t within the
network by measuring the amount of knowledge or information
needed to access the path (25–27). Originally defined for binary
networks, search information depends on the node degrees along
the path and represents a measure of network navigability in the
absence of global knowledge. In the present context, we are in-
terested in the search information needed to travel along the
shortest path. A shortest path between a source node s and a
target node t is described by the sequence of weighted edges
composing it, i.e., πs→t = fwsi;wij; :::;wktg, and by the correspond-
ing sequence of nodes Ωs→t = fs; i; j; :::k; tg, with jπs→tj=K and
jΩs→tj=K + 1. The probability of taking the shortest path from s

to t, may be expressed as Pðπs→tÞ= ∏i∈Ωp
s→t

πð1Þi→t
wi
, with πð1Þi→t repre-

senting the first element (weighted edge) of the path πi→t and Ωp
s→t

representing the sequence of nodes excluding the target, i.e.,
Ωp

s→t = fs; i; j; :::kg. Hence, assuming no degeneracy of shortest-
paths in weighted networks, the information needed to access the
path is denoted by Sðπs→tÞ= − log2ðPðπs→tÞÞ.
Note that, in contrast to the measure as originally introduced

(22), this definition operates on weighted graphs (which in most
cases prevents the occurrence of degenerate shortest paths) and
does not consider preserving knowledge about the previous step.
Analogous information-theoretical treatment has been also in-
troduced to study the reversibility of causal processes (28).
Weighted edges do not ensure symmetry in search information
when source and target are swapped. In other words, search
information of a given shortest path depends on the assignment
of the source and the target. Given the lack of directionality in
the SC matrices used here, we define the search information of
a bidirectional shortest-path πs↔t as follows:

Sðπs↔tÞ= Sðπs→tÞ+ Sðπt→sÞ
2

:

The matching index (29) is a measure that quantifies the simi-
larity of input and/or output connections of two nodes excluding
their mutual connections, here defined for undirected weighted
networks as follows:

mij =

P
k≠i; j

�
wik +wjk

�
ΘðwikÞΘ

�
wjk

�

P
k≠j wik +

P
k≠i wjk

;

where ΘðwikÞ= 1 if wik > 0 and 0 otherwise. Extending this
measure to a set of nodes comprising a path linking a source
node s to a target node t captures the transitivity of the path,
or put differently, the density of local detours that are available
along the path. This leads to the definition of “path transitivity”
as follows:

Mðπs→tÞ=
2
P

i∈Ω
P

j∈Ω mij

jΩjðjΩj− 1Þ ;

with the edges comprising the path πs↔t excluded. The measure is
independent of the directionality of the path and hence ensures
Mðπs→tÞ=Mðπt→sÞ.
Fig. 1 schematically illustrates how four measures associated

with shortest paths across a network may affect the efficiency of
communication between nodes and hence the expected strength
of FC. First, the strength of connections along the shortest path,
expressed as the weighted path length Dðπs→tÞ, is likely to impact
communication efficiency (Fig. 1A). Second, assuming some
level of signal attenuation at each step, the number of steps along
the shortest path Kðπs→tÞ is also likely to play a role in internodal
communication (Fig. 1B). Third, communication may be affected
by the accessibility of the shortest path, quantified as the search
information Sðπs→tÞ (Fig. 1C). Fourth, the number of ways by
which signals that deviate from the shortest path can reaccess it
[e.g., through brief (one-step) excursions or detours], captured
by path transitivity Mðπs→tÞ, may influence path accessibility
(Fig. 1D). Overall, these measures predict that paths with stronger
edge weights (shorter weighted path length), involving fewer steps,

Fig. 1. Schematic diagram of network measures. A source node “s” is linked
to a target node “t” by a shortest path (black nodes and edges), embedded
in the rest of the network (gray nodes and edges). Connection weight is
proportional to line width. The arrows indicate the direction of communi-
cation along the shortest path (solid arrows) or away from it (dotted arrows).
(A) Stronger weights along the path predict FC1 > FC2. (B) More steps along
the path predict FC1 > FC3. (C) Lower node degree along the path (lower
search information) predicts FC3 > FC4. (D) Fewer local detours along the
path (lower path transitivity) predict FC4 < FC5.
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with lower-degree nodes along the way and more local detours
should promote more efficient communication and hence result in
higher FC.

Prediction of FC
Three high-resolution datasets (labeled LAU1, LAU2, and
UTR; SI Methods) recording networks of structural and func-
tional connections between ∼1,000 parcels of human cerebral
cortex were used for constructing and testing computational
models. SC was inferred on the basis of diffusion imaging [dif-
fusion spectrum imaging (DSI) for LAU1 and LAU2; diffusion
tensor imaging for UTR] and tractography; resting-state FC was
measured as Pearson cross-correlations between fMRI time se-
ries recorded for periods totaling 35 min (LAU1), 9 min
(LAU2), and 8 min (UTR). Despite differences in imaging sites,
data acquisition, preprocessing, and participant cohorts, group-
averaged structural and functional connection matrices displayed
significant statistical relationships across all datasets (Fig. S1).
Confirming and extending previous studies (2, 11), the strength
of structural connections among connected node pairs was sig-
nificantly correlated with the strength of the corresponding func-
tional connections (R̂= 0:515 for 66 anatomical regions; R̂= 0:338
for high-resolution matrices). The symbol R̂ denotes an average of
correlation values across all three datasets. All correlation P values
reported in this study are P < 0.001.
In accordance with previous reports (11), functional con-

nections between structurally connected node pairs were on av-
erage significantly stronger than functional connections between
unconnected node pairs (Fig. 2A, all P < 0.001), and the strength
of FC among node pairs declined with their spatial separation
estimated as the Euclidean distance (Fig. 2B). In each distance
bin, FC between structurally connected pairs was significantly
stronger than between unconnected pairs (all P < 0.001). The
strength of functional connections declined with the length of the
shortest path, expressed as the number of steps (Fig. 2C). Jointly,

these observations suggest that connectedness, physical distance,
and path length are partially predictive of the strength of FC.
Group-averaged SC was used in simulations of nonlinear

neural mass models (11, 17; see SI Methods) as well as analytic
linear models (30). These models generated patterns of cross-
correlations that were significantly correlated with those recor-
ded empirically (Fig. S2 A and B), and hence succeeded in
partially predicting FC from SC. In neural mass models, corre-
lations between simulated FC and empirical FC were examined
across a range of coupling strengths (Fig. S2C), with peak cor-
relations at R̂= 0:423, R̂= 0:359, and R̂= 0:251, for all node pairs,
structurally connected pairs and structurally unconnected pairs in
the right cerebral hemisphere (RH), respectively (see Table S1 for
performance on individual datasets). FC prediction was consis-
tently found to be stronger for node pairs within the same cortical
hemisphere than for node pairs across the whole brain, likely due
to incomplete capture of cross-hemispheric SC pathways. In linear
models (see SI Methods), the corresponding levels of correlations
between simulated and empirical FC were R̂= 0:391, R̂= 0:266,
R̂= 0:216 (RH; all, connected, unconnected pairs; Table S1). The
Euclidean distance between node pairs has been used previously
as a predictor of FC (19). Across the three datasets, a linear re-
gression model of FC based on Euclidean distance, derived from
the spatial positions of individual cortical parcels, yielded R̂= 0:419,
R̂= 0:584, and R̂= 0:330 (RH; all, connected, unconnected pairs;
Table S1).
To compare the capacity of analytic measures of network

communication to predict empirically measured FC, we derived
a series of linear regression models. Table S1 summarizes re-
gression coefficients obtained from four predictors, comprising
the weighted path length (D), the path length expressed as the
number of steps (K), the search information (S), and the path
transitivity (M), all derived from weighted group-averaged SC
matrices. The capacity of these predictors was robust with re-
spect to the choice of the weight-to-distance transform used to
compute the shortest path (compare Tables S1 and S2). For
example, regarding search information, using the negative log of
the SC to compute the shortest path yielded R̂= 0:488, R̂= 0:443,
and R̂= 0:315 (RH; all, connected, unconnected pairs; Table S1),
whereas using the inverse of SC yielded R̂= 0:467, R̂= 0:422, and
R̂= 0:302 (RH; all, connected, unconnected pairs; Table S2).
Ranking the capacity of these four predictors to model empirical
FC revealed that predictions on the basis of S and M were
comparably strong across all three datasets (single and both
hemispheres), and consistently outperformed predictions derived
from D and K . For both search information and path transitivity,
the strength of the predictive relationship was found to exceed
that obtained by computational models of linear or nonlinear
brain dynamics, as well as the Euclidean distance. Notably, in
contrast to computational models, analytic measures did not
require parameter exploration or fitting and their only input
consisted of a weighted SC matrix.
Fig. 3A shows a matrix of empirically measured FC (LAU1)

and corresponding (predictive) matrices of pairwise search in-
formation and pairwise path transitivity, both derived analytically
from the empirical SC. Fig. 3B shows the corresponding scatter-
plots. Regarding search information, we determined the portion of
the correlation that was accounted for by path length. Importantly,
across all three datasets, search information remained significantly
predictive of FC after regressing out the stepwise path length
(R̂= 0:357 and R̂= 0:307, all pairs; RH, both hemispheres, re-
spectively) and when stratifying data by path length (Fig. 3C). This
implies that, given an equal number of steps, FC among node pairs
is stronger if the shortest path is more accessible (Fig. 1C). Re-
garding path transitivity, the measure remains predictive of em-
pirical FC across node pairs separated by a path length of one step
even after regressing out the effect of search information. The
result suggests that for short paths that are equally accessible more
local detours along the path tend to yield higher empirical FC

Fig. 2. Relation of empirical FC to connectedness, Euclidean distance,
and path length, across three datasets (LAU1, top row; LAU2, middle row;
UTR, bottom row). (A) Mean ± SD of pairwise FC, averaged over node
pairs that are structurally connected (red) and structurally unconnected
(blue). (B) Pairwise FC, averaged over connected (red) and unconnected
(blue) node pairs in relation to their Euclidean distance. (C ) Pairwise FC,
averaged over all node pairs, in relation to path length (number of steps),
computed on the SC matrix. The asterisk (*) denotes significant differ-
ences (independent-sample t test, P < 0.01) between connected and un-
connected pairs.
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(Fig. 1D). The effect diminishes rapidly as path lengths increase
(Fig. 3D).
A joint multilinear model comprising all four communication-

based predictors yielded robust prediction accuracy across all
datasets (Table S1, Fig. 4 A and B, and Fig. S3). Despite partial
collinearity between individual predictors (Fig. S4), each pre-
dictor in all datasets contributed significantly to the overall
multilinear model (all P < 10−6). The prediction was strongest
for the dataset with the longest fMRI acquisition time (LAU1),
reaching R = 0.598 across all RH node pairs. Notably, prediction
of FC was strong and significant across both structurally con-
nected (R = 0.616) and structurally unconnected node pairs (R =
0.403). Multilinear models of analytic predictors consistently

outperformed the Euclidean distance as well as linear and
nonlinear neural models (Tables S1 and S2). When computing
nodewise predictions of FC, there was a strong correlation be-
tween the analytic multilinear model and the nonlinear neural
mass model (Fig. S5). This indicates that the two models tend to
perform equally well or equally poorly across regions of the
cortex, possibly pointing to imperfections in the SC matrix as
a common factor that limits model performance. Indeed, pro-
gressive randomization of the SC matrix resulted in lower pre-
diction accuracy (Fig. S6). Fig. S7 shows examples of seed-based
correlation patterns mapped onto the cortical surface, allowing
visual comparison of empirical FC and predicted FC (multilinear
model; dataset LAU1).

Fig. 3. Predicting empirical FC with search information and path transitivity. (A) Pattern of FCemp (lower matrix triangle) and S (upper plot, upper matrix
triangle) as well asM (lower plot, upper matrix triangle) in dataset LAU1 RH. These and all other matrix plots in this paper are scaled to range from −3 SD to +3
SD. Node ordering follows an anatomical progression from frontal to parietal, occipital, and temporal lobes. (B) Corresponding scatter plot of S vs. FCemp (Upper)
and M vs. FCemp (Lower), with red dots indicating structurally connected node pairs, and blue dots indicating structurally unconnected node pairs. The dashed
black line indicates the linear fit, and the gray lines indicate the 10th, 50th, and 90th percentiles of FCemp along binned predictors [log(S) andM]. (C) Strength of
S/FCemp prediction for paths of equal length. (D) Strength of M/FCemp prediction, after regression on log(S), for paths of equal length.

Fig. 4. Multilinear model prediction and its dependence on
Euclidean distance (ED). (A) Pattern of FCemp (lower matrix
triangle) and FC prediction (FCpre) derived from a multilinear
model combining all four predictors (upper matrix triangle) in
dataset LAU1, right hemisphere. Plots corresponding to multi-
linear predictions from all datasets are shown in Fig. S3. (B)
Corresponding scatter plot, with the dashed black line in-
dicating identity, and the gray lines indicating the 10th, 50th,
and 90th percentiles of FCemp. (C) Effect of thresholding away
node pairs separated by short ED on the correlation between
FCemp and FCpre. (D) Pattern of FCemp residuals after re-
gression on ED (lower matrix triangle) and FC prediction de-
rived from a multilinear model combining all four predictors
after regression on ED (upper matrix triangle) in dataset LAU1,
right hemisphere.
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To better assess the influence of distance effects, including
possible distance biases in imaging methodology, on the ability of
communication measures to predict FC, we performed two ad-
ditional analyses. Fig. 4C plots the prediction accuracy of the
multilinear model as a function of a distance threshold, below
which node pairs were omitted from the prediction. Although FC
prediction drops as the threshold is raised, it remains strong and
significant when short-distance relationships (e.g., <15 mm) are
removed. In another analysis, the Euclidean distance was fully
regressed out from all communication-based predictors as well
as from the empirical FC. After regression, multilinear models
continued to yield significant prediction accuracy, across all
datasets and weight-to-distance transforms (Tables S1 and S2).
This suggests that the capacity of analytic measures of communi-
cation to predict empirical FC cannot be accounted for by a re-
lationship of these measures and of FC with Euclidean distance.
To test for cross-model prediction, we substituted, for each

dataset, model coefficients from the other datasets and recom-
puted the predicted FC matrix. Prediction accuracy remained
high (Table S3) for all substitutions, indicating robustness of the
model parameters across datasets.

Discussion
Dynamic fluctuations of neural signals in the resting brain gen-
erate patterns of FC that exhibit characteristic topography when
measured with fMRI (5, 6). When recorded over long time
periods, this spatial patterning of FC provides important in-
formation about the functional organization of intrinsic or rest-
ing-state networks (31, 32). The generative mechanisms that
shape FC patterns and that can account for significant variations
across healthy individuals and across disease states are therefore
of great interest. The present paper explored the capacity of
analytic measures that capture the network embedding of
shortest paths, derived from the SC matrix, to predict FC. These
measures, singly or in conjunction, were found to predict the
strength of FC among both connected and unconnected node
pairs, at levels that matched or significantly exceeded more
conventional path length measures, Euclidean distance, as well
as computational models of neural dynamics.
Understanding the relationship between SC (the sparse net-

work of axonal links among brain regions) and FC (the dense
network of statistical couplings among their neural time series)
remains a central challenge for computational cognitive neuro-
science. Empirical studies have demonstrated a robust relation-
ship between anatomical networks and networks of dynamic
couplings at the macroscale of whole-brain activity (4, 11–13),
the mesoscale of intraareal and interareal connectivity (14), as
well as the microscale of neuronal circuits (33). Computational
studies have built on these empirical data and delivered models
of structurally constrained and endogenously driven neural dy-
namics that can reproduce key features of observed FC (11, 17,
18). Here, we addressed the relation between SC and FC by
defining and assessing analytic measures of network communi-
cation. This approach is valuable because the degree to which
these measures can predict FC may provide conceptual insight
into aspects of dynamic interactions along structural connections
among brain regions. Notably, the approach creates explicit links
between communication processes unfolding within the SC ma-
trix and the emergent pattern of FC, rather than relying on
a phenomenological description of FC alone.
In applications of graph theory to brain networks most studies

have focused on shortest paths as the principal routes along
which communication unfolds (22). Indeed, it seems plausible
that interactions along such paths are dynamically favored (faster
and less prone to noisy interference). However, accessing
shortest paths requires information (25–27, 34, 35), due to the
availability of vast numbers of less efficient alternatives. Hence,
the contributions of shortest paths to neuronal communication
should depend at least in part on how these paths are embedded
within the global network. To capture some of the factors that
promote dynamic interactions along shortest paths, we developed

two measures that supplement the more standard measure of
shortest path length (measured as either weighted distance or
number of steps) by taking into account how such paths are
embedded in the rest of the network (Fig. 1).
Search information quantifies the degree to which the shortest,

and presumably most efficient, communication path is hidden
within the network (25–27), here adapted for weighted networks.
Our principal findings were that search information predicted
FC more strongly than path length alone, and that it remained
predictive even when considering pairs of regions separated
by an equal number of steps. This suggests a significant role of
the (weighted) degree sequence associated with the path: the
more connections are attached to nodes along the shortest path,
the lower the strength of FC (Fig. 1C). At least two explanations
could account for this effect, one due to congestion or noise at
“busier” nodes, and the other due to greater dispersion of signals
along the path. A corollary of our findings regarding search in-
formation is that communication paths that travel across high-
degree nodes, e.g., those comprising the brain’s rich club (36, 37),
although topologically efficient due to short path length, may incur
a cost as high-degree nodes impose higher search information and
thus attenuate the strength of FC.
Path transitivity, defined here for undirected weighted net-

works, is computed as the average pairwise matching index,
capturing the density of local detours along the path. Essentially,
high path transitivity implicates the existence of many closed
loops involving nodes along the path, and dynamically these
closed loops may counteract the potential for signal dispersion
measured by search information. We found that path transitivity
was a strong predictor of FC, equal in strength to search in-
formation, and that more local detours promote stronger FC
(Fig. 1D). Possible explanations involve increased common input
onto nodes along the path, feedback loops that recurrently sta-
bilize signals, or recapturing of signals that have gone “off-path.”
The lack of directionality in human diffusion data precludes dis-
tinguishing these alternatives, but the question could be addressed
in directed connectivity data from nonhuman primates. A corol-
lary of our findings regarding path transitivity is that commu-
nication paths that use nodes with high matching index, such
as those interconnected in dense subnetworks or modules,
boost FC.
The capacity of search information and path transitivity along

shortest paths to predict whole-brain FC may provide some
conceptual insight about the nature of the underlying commu-
nication process. If communication operates under a perfect
routing policy, the degree to which the shortest path is hidden
should be irrelevant to the efficiency by which signals propagate,
because alternative (and less efficient) paths are excluded from
access. In other words, perfect routing predicts no relationship
between search information or path transitivity and the strength
of FC. The fact that we observe such a relationship implies that
neuronal interactions during spontaneous or resting-brain dy-
namics are not fully accounted for by perfect routing models and
instead suggest diffusion or spreading dynamics (35, 38) or
“greedy routing” strategies (37) as potential candidate models
for brain network communication. Specifically, our results dem-
onstrate that the embedding of shortest paths within the network
plays an additional important role, in particular the (weighted)
degree sequence of the path and the availability of detours.
Other generative models for FC have been proposed, focusing

on the role of spatial distance along with simple topological
measures (19, 39) and critical dynamics (20, 21). A generative
model based on the competition between a distance penalty and
a tendency to link regions with matching inputs was able to re-
produce key features of empirical resting fMRI FC (19). Our
findings point to a similar trade-off between the effects of net-
work communication measures on FC. An important difference
is that our measures are derived from the SC matrix, and that
search information and path transitivity account for attributes of
shortest paths that depend on the network context within which
the path is embedded. Another generative model was based on
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an analytically solvable Ising-spin attractor (20) and, in a low-
resolution version of the LAU1 dataset, demonstrated overlap
between the empirical and modeled FC at a global SC coupling
strength that places the system near a critical bifurcation point.
The relationship between these near-critical dynamics and the
network measures explored in the present study remains to be
investigated in future work.
Although the modeling approach presented in this paper has

potential advantages, it also has limitations. One limitation is
that analytic measures only predict the long-time covariance
structure of communication processes unfolding on the SC ma-
trix but cannot account for time-varying or nonstationary cou-
plings (8, 9), dynamic phenomena like noisy fluctuations around
marginally stable states (18, 21), or more complex measures of
FC involving nonlinear coupling or partial correlation. Another
limitation is that the model explored here assumes that FC is
exclusively due to communication along shortest paths within the
network, and excludes other factors that can boost FC, e.g., al-
ternative (longer) paths, common input, or state-dependent
modulation. Finally, model performance is subject to limitations
inherent in neuroimaging data acquisition. These limitations
include lack of directionality in SC, the quality of diffusion im-
aging data and the tractography reconstructions of fiber path-
ways, and run lengths and appropriate denoising of resting-state
fMRI. Although our results are robust across three different
datasets with varying acquisition parameters and techniques, the
approach pursued in this paper will benefit from future meth-
odological refinements that further improve sensitivity, spatial
and temporal resolution. Further extensions include FC pre-
diction within single subjects as well as use of data-driven (as
opposed to atlas-based or random) parcellation schemes.

With these limitations in mind, we conclude that analytic graph-
based measures of network communication are capable of pre-
dicting patterns of resting-brain FC. Our findings lend support to
the idea that, to a large extent, the long-time average of resting-
brain FC is shaped by the underlying SC, thus supporting a causal
role of the connectome in generating characteristic attributes of
the brain’s functional organization.

Materials and Methods
Details on experimental materials and methods are presented in
SI Materials and Methods. In summary, datasets consisted of
group-averaged, high-resolution structural and functional con-
nectivity matrices describing connections of human cerebral
cortex (see SI Materials and Methods, Datasets). Prediction of
functional connectivity from structural connectivity was analyzed
in simulations of linear models (30; see SI Materials and Methods,
Linear Model) and nonlinear neural models (11, 17; see SI
Materials and Methods, Neural Mass Model). Results were com-
pared to predictions based on analytic measures of network
communication, as described in the main text.
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